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Nonlinear effects due to gravity in a conical Hele-Shaw cell
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In this work we study the viscous fingering instability in a conical Hele-Shaw cell under the presence of
gravity. We focus on understanding how the dynamical evolution of the fingering patterns is affected by the
combined action of gravity and cell topology. Gravity-induced nonlinear effects are studied by a mode-
coupling approach. Our results show that the interplay between gravity and cell topology leads to important
effects, and profoundly modifies pattern evolution. We have found that the most dramatic consequences refer
to finger tip behavior. Depending on the relative values of fluids’ densities and viscosities, finger tip splitting
reaches maximum intensity at well defined, preferred values of the cell opening angle. In fact, finger tip
splitting can be completely replaced by finger tip sharpening as the cell angle is varied. Finger competition
dynamics is also significantly changed: it is considerably enhanced~restrained! if the displaced fluid is more
~less! dense.
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I. INTRODUCTION

The Saffman-Taylor instability@1# arises at the interface
separating two viscous fluids constrained to flow in the n
row gap between closed spaced parallel plates, a de
known as the Hele-Shaw cell. The instability can be ori
nated by the density difference between the fluids, wh
gravity is acting, or by pressure gradients, when the l
viscous fluid displaces the more viscous one. The action
gravity and/or flow injection give rise to the formation o
beautiful patterns, where fingerlike structures can comp
and split at their tips@2#.

The vast majority of both theoretical and experimen
work on viscous fingering pattern formation analyze the
velopment of the Saffman-Taylor instability when the flo
takes place inflat Hele-Shaw cells, by considering rectang
lar @1,2# and radial@3,4# setups. A third possibility analyze
flow in a flat cell in which the sidewalls form a wedge
angleu0 @5,6#. Flow in wedge shaped cells bridges the b
havior between rectangular and radial setups: the rectang
~radial! case corresponds tou050 (u052p). A great deal
has been learned from such flat-cell studies, both from a
demic and practical points of view@1–6#. However, since
viscous flow may occur on substrates of various comp
shapes, it is of interest to study flow innon-flatHele-Shaw
cells, and examine the influence of the background sp
geometry on the growth of the two-fluid interface.

Recently, researchers started to systematically investi
the impact of cell geometry and topology on the Saffma
Taylor problem defined innon-flatHele-Shaw cells@7–10#.
These theoretical works explored a variety of unconventi
ally shaped cells, such as spherical@7,8#, cylindrical @9#, and
conical @10#. Each of these unusual cell geometries pres
unique features leading to distinct physical effects, wh
deserve separate, in-depth analyses. It has been show
Refs.@7–10# that background geometry/topology plays a m
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jor role in determining the shape of the evolving patterns.
spherical cells@7# finger tip splitting is regulated by the cell’
Gaussiancurvature, while in cylindrical cells@9# finger com-
petition is controlled by the cylinder’smeancurvature. It is
worth noting that gravity-driven flow in a cylindrical Hele
Shaw cell has been investigated experimentally more tha
decade ago by Zhao and Maher@11#. These studies@7–11#
are not merely academic, in the sense that they introd
relevant geometrical and topological components into
theoretical framework of conventional Hele-Shaw flow
@1–6#. Such components must be taken into consideratio
more accurate descriptions of various viscous fingering
lated phenomena, associated with a number of industrial
manufacturing processes~pressure molding, coating of thin
films, etc.! @12–15#.

Viscous fingering in a conical Hele-Shaw cell~in the ab-
sence of gravity! has been examined in Ref.@10#. The coni-
cal cell presents distinguished geometrical and topolog
characteristics that makes it significantly different from fl
spherical or cylindrical cells. The Gaussian curvature o
cone vanishes everywhere, except at its apex where it is
gular @16#. Consequently, the cone’s Gaussian curvature
not a good parameter to describe fluid-fluid interface beh
ior. In addition, the cone’s mean curvature is not consta
but changes with the distance from its apex. As a result
cone’s mean curvature does not seem to be a good co
parameter as well. As opposed to flow in spherical and
lindrical cells, topology rather than geometry is the the k
factor in determining the shape of the patterns in coni
cells. As discussed in Ref.@10# the cell’s topology can be
conveniently described by the cone opening angle. Indee
has been verified@10# that interfacial patterns show a signifi
cant sensitivity to variations in the conical cell’s openin
angle.

In the present paper we study the influence of gravity
the development of fingering patterns in a conical Hele-Sh
cell. We consider the action of both gravity and fluid inje
tion, and investigate interface dynamics as a function of
cone opening angle. We focus on the coupling between
©2002 The American Physical Society10-1
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topology and gravity, and study the consequences of s
coupling to the nonlinear evolution of the emerging patter
Throughout this work we will verify that gravity profoundl
affects interface evolution.

The outline of the work is the following: Section II intro
duces our pertubative mode-coupling approach, and der
a nonlinear differential equation that governs the time evo
tion of the interface. Section III discusses the resulting m
tion. Section III A presents a brief discussion of the line
growth rate and identifies relevant stabilizing/destabiliz
factors. Section III B uses the nonlinear mode-coupling d
ferential equation to examine how gravity affects finger
splitting and finger competition. The introduction of nonli
earity through gravity leads to important effects, and prov
a much richer phenomenology. Section IV presents our fi
remarks and discusses perpectives of further study.

II. FORMULATION AND MODE COUPLING

Consider the motion of two immiscible, incompressib
viscous fluids, flowing in a narrow gap between two coax
thin conical shells—the so-calledconical Hele-Shaw cell
~see Fig. 1!. Both shells have the same opening angleg
resulting in a constant gap thicknessb between them. This
geometrically constrained cell forces the flow to become
sentially two dimensional, and the two-fluid interface on
dimensional. Therefore fluid flow takes place on the surf
of a two-dimensional cone, embedded in three dimensio
described in polar coordinates (r,w) by the metric

ds25dr21r2dw2, ~1!

where 0<r,` measures the distance along the surface
the cone from the apexr50, and 0<w<2pb denotes the
azimuthal angle measured on the cone, with 0,b<1. If not
by the change in the periodicity ofw metric ~1! would de-
scribe an ordinary two-dimensional plane. Such unconv

FIG. 1. Schematic configuration of flow in a conical Hele-Sh
cell under the action of gravity and injection. The cone open
angle 0 °,2g<180 °. Other relevant physical quantities are d
fined in the text. The unit vectors along the radial and azimut

directions on the cone are represented byr̂ and ŵ, respectively.
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tional periodicity is intrinsically related to the conical natu
of the background space on which the flow takes place.

The space defined by metric~1! describes a cone which i
constructed by extracting a wedge of angle 2p(12b) from
a planar surface, and by identifying the resulting edges. S
a cone is locally~but not globally! flat with a conical singu-
larity at its vertex@16,17#. The Gaussian curvature of th
cone is given byK52p(12b)d2(r), whered2(r) is the
two-dimensional delta function@18#. The parameterb mea-
sures the ‘‘sharpness’’ of the conical background space
well as the intensity of the Gaussian curvature at the con
vertex. Note thatb is conveniently related to the cone ape
half angle byb5sing. Figure 2 illustrates the general ap

g
-
l

FIG. 2. Sketch of Hele-Shaw cells with~a! b51 ~flat radial
case, 2g5180 °), ~b! b5A3/2 (2g5120 °), and~c! b51/2 (2g
560 °). The topological parameterb5sing.
0-2
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NONLINEAR EFFECTS DUE TO GRAVITY IN A . . . PHYSICAL REVIEW E65 036310
pearance of the Hele-Shaw cell for a few values ofb. We use
b to investigate how the nontrivial geometrical and topolo
cal features of the conical Hele-Shaw cell couple to grat
and affect interfacial pattern formation.

The viscosities and densities of the upper and lower flu
are denoted ash1 , %1, and h2 , %2, respectively~Fig. 1!.
Fluid 1 is injected into fluid 2 through a small orifice locate
at the cone’s vertex, at a given flow rateQ, which is the area
covered per unit time. The flows are assumed to be irro
tional and there is a surface tensions between the fluids.
The acceleration of gravityg is constant, and points down
wards along the cone’s vertical axis of symmetry. During
flow, the two-fluid interface has a perturbed shape descri
as r[R5R1z(w,t), whereR5R(t) denotes the time de
pendent unperturbed radius andz(w,t) represents the inter
face perturbation amplitude. The unperturbed shape
conical cap of radiusR and surface areaA5pbR2. Note the
identity Q5vL, where

v5
Q

2pbR
~2!

denotes the velocity of the unperturbed interface, andL is the
unperturbed interface perimeter.

In order to investigate the dynamical evolution of the tw
fluid interface in a conical Hele-Shaw cell, we represent
net interface perturbation as

z~w,t !5 (
n52`

1`

zn~ t !expS inw

b D , ~3!

where zn(t)5(1/2pb)*0
2pbz(w,t)exp(2inw/b)dw denotes

the complex Fourier mode amplitudes andn50,61,
62, . . . is thediscrete azimuthal wave number.

The governing equation for the system is derived by a
ing a gravitational force term to a generalized version of
usual, flat Darcy’s law@1,2#, adjusted to describe flow in
conical Hele-Shaw cell@10#, yielding

AS f1uR1f2uR
2

D 2S f1uR2f2uR
2

D
52akuR1xA12b2ruR , ~4!

wheref j defines the velocity potential in fluidsj 51 and 2,
A5(h22h1)/(h21h1) is the viscosity contrast, a
5b2s/@12(h11h2)# contains the surface tension, andx
5b2g(%12%2)/@12(h11h2)# measures the strength o
gravitational forces. To obtain Eq.~4! we used the pressur
boundary conditionp12p25skuR at the interfacer5R,
wherek is the interfacial curvature@2,10,19#. Note that the
gravity term in Eq.~4! depends onb, and as expected, goe
to zero in the flat-cell limitb→1 ~flat radial flow!.

At this point, we would like to mention that the study o
the Saffman-Taylor instability in conical cells allows one
investigate the action of gravitational forces in radially sy
metric Hele-Shaw flows. Previous studies of radial sou
flow in flat, circular @3,4#, and wedge shaped@5,6# cells do
not include any contribution from gravity. Another interes
03631
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ing point is the important qualitative distinction betwee
gravity-driven flows in conical and inclined, rectangul
Hele-Shaw cells@1,2#. In tilted rectangular cells, one ma
change the strength of the gravitational force by varying
cell’s inclination angle with respect to the direction ofg. In
rectangular cells, this can be done without varying the
perturbed flow velocity. In contrast, in conical cells both u
perturbed velocity and gravitational force depend onb, and
therefore are modified if the cone opening angle is vari
The connection of gravitational force and unperturbed vel
ity with b introduces interesting interfacial behavior.

To conclude our derivation, we follow standard steps p
formed in weakly nonlinear studies@7,10#, by defining Fou-
rier expansions for the velocity potentials, which ob
Laplace’s equation“2f j50. We expressf j in terms of the
perturbation amplitudeszn by considering the kinematic
boundary conditionn•“f1uR5n•“f2uR , wheren denotes
the unit normal to the interface pointing from fluid 1 to flu
2 @2,10,19#. Substituting these relations into Eq.~4!, and
Fourier transforming, yields the mode coupling equation
the Saffman-Taylor problem in a conical Hele-Shaw ce
taking into account both injection and gravity

żn5l~n!zn1 (
n85” 0

@F~n,n8!zn8zn2n81G~n,n8!żn8zn2n8#,

~5!

where

l~n!5F Q

2pR2b2
~Aunu2b!2

a

R3b
unuS n2

b2
21D

1
x

Rb
unuA12b2G ~6!

denotes the linear growth rate, and

F~n,n8!5
unu
R H QA

2pR2b2 F1

2
2sgn~nn8!G

2
a

R3b
F12

n8

2b2
~3n81n!G J , ~7!

G~n,n8!5
1

R H A
unu
b

@12sgn~nn8!#21J ~8!

represent second-order mode coupling terms. The ove
denotes total time derivative, and the sgn function equals61
according to the sign of its argument. It is worth noting th
F(n,n8) andG(n,n8) depend onb, but show no dependenc
whatsoever on gravity. Gravitational forces will affect no
linear stages of interface evolution through the coupling o
full spectrum of modes, as expressed in Eq.~5!.
0-3
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III. DISCUSSION

A. Linear growth rate

Before addressing the major subject of this work, nam
the study of gravity-induced nonlinear effects in conic
cells, we briefly discuss the linear growth rate expression~6!.
It is well known that the linear instability of the fluid-fluid
interface can be evaluated by the sign of Eq.~6!: if l(n)
.0 the disturbance grows, indicating instability.

We begin by describing each term inl(n). Inspecting Eq.
~6! we observe the interplay of injection (Q), surface tension
(a), and gravity (x) terms in determining the interface in
stability. In general, the injection term can be either posit
or negative depending on the signs ofQ andA. The caseQ
.0 (Q,0) corresponds to injection~suction! of fluid,
while A.0 (A,0) is related to the case in which the upp
~lower! fluid is the less viscous. The second term on the ri
hand side of Eq.~6! involves the contribution coming from
surface tension, and clearly has a stabilizing nature (s stabi-
lizes modes of largen). Finally, as a result of gravitationa
forcing the third term in Eq.~6! may be either positive o
negative, depending on the relative values of the fluid’s d
sities. If the upper fluid is more dense (%1.%2), gravity
plays a destabilizing role. The opposite effect arises w
%1,%2.

On top of all these possible linear stability scenarios, n
that the three terms in Eq.~6! contain an explicit dependenc
on unperturbed interface radiusR, and onb. In generalR is
time dependent, so the balance among the vari
stabilizing/destabilizing terms depends on time, and th
relative intensities may vary as the interface progresses
addition, by virtue of its dependence onb the linear growth
rate ~6! would vary if the cell opening angle is modified
Because of the large number of independent parame
even at the linear level, the study of the fluid-fluid interfa
dynamics in conical cells is not trivial.

To facilitate our analysis in the rest of the paper we w
be concerned with the tradicional experimental setup of
Saffman-Taylor problem, in which injection is positiveQ
.0, and the less viscous fluid pushes the more viscous
such thatA.0. Under these circumstances the first term
Eq. ~6! is destabilizing, and even if gravity is neglected t
viscosity contrast between the fluids may lead to comp
interface shapes involving finger tip splitting and finger co
petition. To monitor gravitational effects we consider spec
situations in which gravity can be either stabilizing or des
bilizing. Within this scenario we systematically study ho
the coupling between gravity and cell topology influenc
growth in a conical cell. We carry out the nonlinear analy
of the system in the next sections.

B. Nonlinear effects

We use the mode coupling Eq.~5! to investigate how
gravity influences the shape of the fingering patterns at
onset of nonlinear effects. We focus on the mechanism
finger tip splitting and finger competition, and consider t
coupling of a small number of modes. To simplify our di
cussion we rewrite Eq.~5! in terms of cosine and sine mode
03631
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where the cosinean5zn1z2n and sinebn5 i (zn2z2n) am-
plitudes are real valued. For consistent second order exp
sions, we replace the time derivative termsȧn and ḃn by
l(n) an andl(n) bn , respectively. Without loss of genera
ity we choose the phase of the fundamental mode so
an.0 andbn50.

Finger tip splitting and tip sharpening phenomena are
lated to the influence of a fundamental moden on the growth
of its harmonic 2n @20#. The equations of motion for the
harmonic mode are written as

ȧ2n5l~2n!a2n1
1

2
T~2n,n!an

2 , ~9!

ḃ2n5l~2n!b2n , ~10!

where the finger tip function is defined as

T~2n,n!5@F~2n,n!1l~n!G~2n,n!#. ~11!

The functionT(2n,n) controls finger tip behavior. The sig
of T(2n,n) dictates whether finger tip splitting or finger ti
sharpening is favored by the dynamics. IfT(2n,n),0, the
result is a driving term of orderan

2 forcing growth of a2n

,0, the sign that is required to cause outwards point
fingers to split. In contrast, ifT(2n,n).0 growth of a2n
.0 would be favored, leading to outward-pointing finger t
sharpening.

Finger competition is related to the influence of a fund
mental moden, assumingn is even, on the growth of its
subharmonic moden/2 @20#. The equations of motion for the
subharmonic mode are

ȧn/25H l~n/2!1
1

2
C~n/2!anJ an/2 , ~12!

ḃn/25H l~n/2!2
1

2
C~n/2!anJ bn/2 , ~13!

where the finger competition function is defined as

C~n/2!5FFS 2
n

2
,
n

2D1l~n/2!GS n

2
,2

n

2D G . ~14!

The functionC(n/2) disciplines finger competition. Observ
ing Eqs.~12! and ~13! we verify thatC(n/2).0 increases
the growth of the cosine subharmonican/2 , while inhibiting
growth of its sine subharmonicbn/2 . The result is an in-
creased variability among the lengths of fingers of the l
viscous fluid 1 penetrating into the more viscous fluid 2. T
effect describes finger competition. Sine modesbn/2 would
vary the lengths of fingers of the more viscous fluid 2 pe
etrating into the less viscous fluid 1, but it is clear from E
~13! that their growth is suppressed. Reversing the sign
C(n/2) would exactly reverse these conclusions, such t
modesbn/2 would be favored over modesan/2 . Regardless of
its sign, the functionC(n/2) measures the strength of th
competition: increasingly larger values ofC(n/2) lead to en-
hanced finger competition.
0-4
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TABLE I. Experimental parameters used in situations I and II, taken from Refs.@1,3,4#. In situation I~II !
fluid 1 is water~air! and fluid 2 is Shell Diala oil~glycerine!. The acceleration of gravityg5980 cm/s2.

Situation h1 h2 %1 %2 s b Q
(g/cm s) (g/cm s) (g/cm3) (g/cm3) (dyn/cm) (cm) (cm2/s)

I 0.01 0.30 1.00 0.875 15 0.10 9.3
II '0 5.21 '0 1.261 63 0.15 9.3
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As pointed out in Sec. III A, the analysis of viscous fi
gering pattern formation in conical cells involves many
dependent parameters. Consequently, one must be pa
larly cautious in handling with situations in which the ce
opening angle~or correspondingly,b) is varied. We follow
the instantaneous approach introduced in Ref.@7#: while b is
varied, we look at the instantaneous tendency towards
splitting and finger competition for interfaces of identic
unperturbedv and L, taking advantage of the identityQ
5vL @see Eq.~2!#. In the case of tip splitting, we consider
particular v and L combination at the onset of growth o
mode 2n @using the conditionl(2n)50# in the flat cell limit
b→1, where it is known thatT(2n,n) is negative@20#. In
the analysis of finger competition, we take a differentv and
L pair at the onset of growth of moden @using the condition
l(n)50# in the limit b→1, where it is known thatC(n/2) is
positive@20#. Using this approach we fix the (v, L) pairs that
lead to the correct flat, radial flow behavior for whic
T(2n,n),0 andC(n/2).0, and follow alterations in inten
sity and/or sign of these functions whileb is varied.

Depending on the experimental parameters used, qua
tively different scenarios of interfacial instabilities can
considered in conical cells. In this work, we are interested
studying the effects of gravity in the usual viscosity-driv
Saffman-Taylor instability. Therefore we seth1,h2, and ex-
amine two different situations, regarding the relative valu
of the fluid’s densities:~i! in situation I, water displaces oil
This is a rather typical situation@1# in which fluid 1 ~water!
is more dense and less viscous than fluid 2~oil!; ~ii ! in situ-
ation II, air is blown into glycerine. This is the usual co
figuration in viscous fingering experiments@3#, where fluid 1
~air! is less viscous and less dense than fluid 2~glycerine!.
The physical parameters we use in our calculations h
been taken from classical experimental papers by Saffm
and Taylor@1#, Paterson@3#, and Chen@4#. These parameter
are presented in Table I.

C. Situation I

First, let us examine situation I (h1,h2 ,%1.%2). In this
case the morphological instability can be driven by both v
cosity and density differences between the fluids. We be
by examining tip splitting events. To illustrate how gravi
affects tip splitting as a function of the cell opening angle,
Fig. 3 we plotT(2n,n) with respect tob, for two different
values of mode numbern. The solid black curves include
gravitational driving, while the dashed gray curves negl
the effects of gravity. First, note that the black curves
below the corresponding gray ones, meaning that gravity
duces more negative values ofT(2n,n), and acts to favor
03631
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tendency toward tip splitting. This effect is not really surpr
ing, %1.%2 and gravity is obviously a destabilizing facto
However, Fig. 3 quantifies important discrepancies betw
interface evolution in the presence/absence of gravity
gravity is neglected, and we focus on a given moden, we
observe that the magnitude ofT(2n,n) is maximum for the
flat, radial case (b51) and monotonically decreases asb
tends to zero. Therefore when gravity is neglected narro
cells would lead to less splitting.

On the other hand, when gravity is taken into account
behavior in Fig. 3 is considerably different: initially
T(2n,n),0 decreases with decreasingb, reaches a mini-
mum value, and subsequently increases asb tends to zero,
although remaining always negative. The essential fac
that gravity not only leads to more splitting, but for eachn it
assigns a particular value ofb, that we denote byb̄(n), at
which T(2n,n) reaches aminimum. Consequently, for each
moden there is a specific value of the cone opening angle
which the intensity of finger tip splitting is strongest. This
an intrinsically nonlinear effect which is completely abse
when gravity is neglected. Under the cirscumstances of s
ation I, one could control tip splitting and induce a certa
number of split fingers, by setting the appropriate cell op
ing angle.

Figure 4 shows howb̄(n) varies with moden. By inspect-
ing Fig. 4 we note that the values ofb̄(n) quickly drop to an
asymptotic valueb̄(n→`)'0.7071, asn is increased. In
Fig. 4 b̄(n→`) is marked by a dashed line. For 2<n,`,
the values ofb that minimizeT(2n,n) lie in a somewhat

FIG. 3. T(2n,n) as a function ofb, for modesn56,10 in situ-
ation I. The solid~dashed! curves describe evolution for nonzer
~zero! gravity. The units ofT(2n,n) are (cm s)21.
0-5
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JOSÉA. MIRANDA PHYSICAL REVIEW E 65 036310
narrow range: 0.7071&b̄(n)&0.9080. In terms of the con
opening angle it corresponds to the interval 90 °&2g
&130 °, which is actually small if compared to the tot
180 ° range in 2g. This last finding is somehow unexpecte
and could not be predicted from purely linear analysis.
practical terms, this narrow interval could be conside
even narrower if we take into account the fact that the m
nitude of T(2n,n) at b̄(n) decreases very rapidly with in
creasingn, as can be easily verified in Fig. 3. Based on the
conclusions we see that the inclusion of gravity in coni
cells profoundly modifies pattern formation dynamics: fing
tip splitting is strongest at a particular set of cell openi
angles, concentrated within a narrow angular interval.

Still considering situation I, we investigate the effect
gravity on finger competition dynamics. Figure 5 illustrat
how finger competition varies with the cell opening ang
under the effect of gravity, and plotsC(n/2) as a function of
b. We contrast finger competition behavior in the presenc

FIG. 4. Plot of b̄(n) as a function of mode numbern. The

dashed line corresponds to the asymptotic valueb̄(n→`)
'0.7071.

FIG. 5. C(n/2) as a function ofb, for modesn56,10 in situa-
tion I. The solid ~dashed! curves describe evolution for nonzer
~zero! gravity. The units ofC(n/2) are (cm s)21.
03631
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gravity ~solid black curves! with the case in which it is ab-
sent~dashed gray curves!. The differences of results are no
as dramatic as in the case of tip splitting events mentio
above, but are still noteworthy. We see from Fig. 5 that,
black curves lie above the gray ones, meaning that gra
enhances finger competition. As soon asb assumes values
slightly smaller than 1, gravity takes over and competiti
increases significantly in comparison to the flat radial c
(b51). Unlike finger tip splitting behavior, finger compet
tion keeps increasing whenb tends to zero.

D. Situation II

Now we turn our attention to situation II (h1,h2 ,%1
,%2). Recall that now the density of the displacing fluid 1
smaller than the density of fluid 2. Consequently, grav
should play a stabilizing role. However, one should not f
get that, as verified in situation I, nonlinearity may lead
important effects, and introduce a richer phenomenolo
This is exactly what we find by examining tip splitting fo
mation in situation II.

We start by analyzing Fig. 6, that shows howT(2n,n)
varies withb, for n55,6, and 8. Observing Fig. 6 we notic
a remarkable feature: by varyingb the functionT(2n,n)
changes not only its magnitude, but it also can reverse
sign. For moden55 the black curve is above the dash
gray one, so gravity decreases the strength of tip splitt
Observe further that, forn56 and n58, T(2n,n) starts
negative, but after reaching a critical value ofb @calculated
by setting T(2n,n)50#, it becomes positive. We denot
these values ofb at which this ‘‘sign transition’’ inT(2n,n)
occurs bybc(n).

The central result that can be extracted from Fig. 6 is th
if n.5 andb is decreased, gravity plays two distinct role
it starts by inhibiting tip splitting, and after reachingbc(n) it
passes to favor tip sharpening. This is a legitimate signa
of nonlinearity: gravity is linearly stabilizing (%1,%2), but
in terms of tip sharpening formation it may play a desta
lizing role. Obviously, this effect could not be predicted b
linear stability analysis. Note in Fig. 6 that the zero-gravi

FIG. 6. T(2n,n) as a function ofb, for modesn55,6, and 8 in
situation II. The solid~dashed! curves describe evolution for non
zero ~zero! gravity. The units ofT(2n,n) are (cm s)21.
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dashed gray curves correspond toT(2n,n),0 for all non-
zero values ofb. Therefore, if gravity is not taken into ac
count, the interesting duality in the behavior ofT(2n,n)
mentioned above simply does not exist.

Figure 7 illustrates how the critical valuesbc(n) vary
with mode numbern. Forn,6 there is no change in the sig
of T(2n,n) while b is decreased. Atn56 there is a sudden
jump in bc(n), meaning that atbc(6)'0.7008 the tip split-
ting function is about to reverse its sign. We also note t
bc(n) tends asymptotically to 1 asn is increased. However
we should not expect dramatic transitions from tip splitti
to tip sharpening whenb→1, since the magnitude o
T(2n,n) decreases with increasingn. The contribution of
larger Fourier modes to finger tip splitting and tip sharpen
is negligible. We estimate that the sign transition inT(2n,n)
is more significant for modes 6<n<10, where 0.7008
&bc(n)&0.9680. In terms of the cone opening angle it c
responds roughly to the interval 90&2g&150 °. Curiously,
this interval of angles, in which interesting effects are mo
relevant in situation II, is very similar to the angular range
2g that maximizesT(2n,n) in situation I. We lack an expla
nation for why this is so.

We conclude this section with a brief discussion ab
finger competition under the circumstances of situation II.
Fig. 8 we plotC(n/2) as a function ofb for two different
values ofn. As a general observation, we see from Fig. 8 t
nonzero gravity curves~solid! are all located below the zero
gravity ones~dashed!. So, it is clear that gravity tends t
suppress finger competition in comparison to the ze
gravity case.

A closer look at Fig. 8 reveals additional information.
gravity is neglected, we observe that the magnitude
C(n/2) is lowest in the flat, radial limit (b51), and in-
creases monotonically asb tends to zero. The result is mor
competition for narrower cells. On the other hand, if grav
is present, the behavior ofC(n/2) as a function ofb is more
subtle: unlike the zero-gravity case, competition is larg
when b51, progressively decreases asb is decreased
reaches a minimum, and then starts to increase very gent

FIG. 7. Plot ofbc(n) as a function of mode numbern. Note the
abrupt change atn56, corresponding to a ‘‘sign transition’’ in
T(2n,n).
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b→0. For n56 (n58) the location of the minimum isb
'0.4331 (b'0.2210). In fact, we have verified that the lo
cation of the minima tends very rapidly tob'0 as n is
increased. In addition, the magnitude ofC(n/2) at the
minima decreases notably with increasingn. In principle, the
coupling between gravity and cell topology could increase
decrease finger competition, depending on the value of
cell opening angle. However, based on the comments ab
and on the behavior depicted in Fig. 8 we conclude t
inhibition effects are much more significant. In practic
terms, when gravity is acting the prevalent tendency
C(n/2) is to become lower and lower in magnitude asb is
decreased.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we have investigated gravity-induced no
linear effects in conical Hele-Shaw cells. We used a mo
coupling approach to examine how gravity couples to c
topology and influences finger tip splitting and finger co
petition. Two basic situations have been considered: in s
ation I ~II ! the displacing fluid is less viscous and more~less!
dense. In both situations we have found that the introduc
of nonlinearity through gravity leads to important effec
with remarkable consequences for viscous fingering pat
formation.

The most dramatic consequences are related to finge
behavior. In situation I gravity couples to cell topology
select specific values of the cell opening angle at which
strength of finger tip splitting is maximum for a given mod
numbern. In situation II, we have found that gravity plays
dual role: depending on the cell opening angle, and m
numbern it may inhibit tip splitting, or favor tip sharpening
In this case, although gravity is linearly stabilizing, it ma
play a destabilizing role regarding tip sharpening pheno
enon. With respect to finger competition we have found t
the presence of gravity does not act as dramatically as in
tip-splitting case, but it still introduces significant changes
the magnitude of the effects: in situation I gravity consid
ably enhances competition among fingers, while in situat

FIG. 8. C(n/2) as a function ofb, for modesn56,8 in situation
II. The solid ~dashed! curves describe evolution for nonzero~zero!
gravity. The units ofC(n/2) are (cm s)21.
0-7
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II it leads to a strong reduction in finger competition.
A couple of other important points related to gravit

driven flow in conical geometry still deserve to be inves
gated in more detail. The first one is the interesting possi
ity of avoiding the formation of finite time cusp singularitie
in the absence of surface tension. The role of rotation in
possible suppression of such singular behavior has bee
cently discussed by Magdalenoet al. @21#, in the case of
rotating, flat Hele-Shaw cells. In the conical cell case,
coupling between gravity and cell topology could possib
provide a similar kind of control over cusp instabilities. W
can verify this point by inspecting the linear growth rate~6!
in the zero surface tension case (a50). In Eq. ~6! we note
that the injection term goes as 1/R2, while the gravity term
varies as 1/R. SinceR is time dependent forQ5” 0, the rela-
tive weight of injection and gravity terms determines whi
of the two effects dominates asymptotically in time. In fa
if Q.0, A.0, and%1.%2, the typical interface velocities
decrease with increasingR, so gravity would dominate a
long times. Under such circumstances, gravity could in p
ciple, delay or even avoid cusp formation. It is worth noti
that a similar kind of gravity-controlled effect can be o
tained in spherical Hele-Shaw cells@8#, where gravity would
couple to cell’s Gaussian curvature to prevent cusp form
tion. All these suggestive indications are of course based
linear theory, so its validity in fully nonlinear stages is st
. A

C

ds

ys

ys
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an open question, and deserves a more complete and r
ous study.

It is also of interest to investigate in more detail the re
sons why some of the most interesting behavior in con
cells with gravity happen at somewhat narrow range of op
ing angles. It would be of interest to verify the existence o
‘‘critical angle,’’ at which relevant nonlinear effects are mo
intense and dominant. This important issue has an interes
parallel with what has been observed in flat, wedge sha
cells. Experiments in the wedge geometry@5,6# observed an
increasing sensitivity to finger tip splitting for larger ang
u0. Actually, there is some theoretical evidence@22# for the
existence of a critical angleu0'120–140 ° in viscous fin-
gering and diffusion-limited aggregation in wedge geome
As claimed in Ref.@22#, for wedges with an angle larger tha
u0 two split fingers could coexist without competition. Sim
lar type of studies in conical cells could provive valuab
information about the connection between dominant fin
behavior and specific values of cell opening angles.
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