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Nonlinear effects due to gravity in a conical Hele-Shaw cell
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In this work we study the viscous fingering instability in a conical Hele-Shaw cell under the presence of
gravity. We focus on understanding how the dynamical evolution of the fingering patterns is affected by the
combined action of gravity and cell topology. Gravity-induced nonlinear effects are studied by a mode-
coupling approach. Our results show that the interplay between gravity and cell topology leads to important
effects, and profoundly modifies pattern evolution. We have found that the most dramatic consequences refer
to finger tip behavior. Depending on the relative values of fluids’ densities and viscosities, finger tip splitting
reaches maximum intensity at well defined, preferred values of the cell opening angle. In fact, finger tip
splitting can be completely replaced by finger tip sharpening as the cell angle is varied. Finger competition
dynamics is also significantly changed: it is considerably enhafrestrained if the displaced fluid is more

(les9 dense.
DOI: 10.1103/PhysReVvE.65.036310 PACS nunerd7.20.Ma, 47.60ri, 47.20.Ky, 47.54+r
[. INTRODUCTION jor role in determining the shape of the evolving patterns. In

spherical cell$7] finger tip splitting is regulated by the cell's
The Saffman-Taylor instability1] arises at the interface Gaussiarcurvature, while in cylindrical cellf9] finger com-
separating two viscous fluids constrained to flow in the narpetition is controlled by the cylinder'meancurvature. It is
row gap between closed spaced parallel plates, a deviogorth noting that gravity-driven flow in a cylindrical Hele-
known as the Hele-Shaw cell. The instability can be origi-Shaw cell has been investigated experimentally more than a
nated by the density difference between the fluids, wheriecade ago by Zhao and MaHdr]. These studie§7—11]
gravity is acting, or by pressure gradients, when the lesare not merely academic, in the sense that they introduce
viscous fluid displaces the more viscous one. The action ofelevant geometrical and topological components into the
gravity and/or flow injection give rise to the formation of theoretical framework of conventional Hele-Shaw flows
beautiful patterns, where fingerlike structures can competgl—6]. Such components must be taken into consideration in
and split at their tip$2]. more accurate descriptions of various viscous fingering re-
The vast majority of both theoretical and experimentallated phenomena, associated with a number of industrial and
work on viscous fingering pattern formation analyze the demanufacturing processépressure molding, coating of thin
velopment of the Saffman-Taylor instability when the flow fiims, etc) [12—-15.
takes place irflat Hele-Shaw cells, by considering rectangu-  Viscous fingering in a conical Hele-Shaw céh the ab-
lar [1,2] and radial[3,4] setups. A third possibility analyzes sence of gravityhas been examined in R¢L0]. The coni-
flow in a flat cell in which the sidewalls form a wedge of cal cell presents distinguished geometrical and topological
angle 0, [5,6]. Flow in wedge shaped cells bridges the be-characteristics that makes it significantly different from flat,
havior between rectangular and radial setups: the rectangulgpherical or cylindrical cells. The Gaussian curvature of a
(radia) case corresponds =0 (6y=2). A great deal cone vanishes everywhere, except at its apex where it is sin-
has been learned from such flat-cell studies, both from acagular [16]. Consequently, the cone’s Gaussian curvature is
demic and practical points of viepdl—6]. However, since not a good parameter to describe fluid-fluid interface behav-
viscous flow may occur on substrates of various complexor. In addition, the cone’s mean curvature is not constant,
shapes, it is of interest to study flow mon-flatHele-Shaw  but changes with the distance from its apex. As a result the
cells, and examine the influence of the background spaceone’'s mean curvature does not seem to be a good control
geometry on the growth of the two-fluid interface. parameter as well. As opposed to flow in spherical and cy-
Recently, researchers started to systematically investigatindrical cells, topology rather than geometry is the the key
the impact of cell geometry and topology on the Saffmanfactor in determining the shape of the patterns in conical
Taylor problem defined imon-flatHele-Shaw cell§7—-10.  cells. As discussed in Ref10] the cell's topology can be
These theoretical works explored a variety of unconventioneonveniently described by the cone opening angle. Indeed, it
ally shaped cells, such as spherifai8], cylindrical[9], and  has been verifieffL0] that interfacial patterns show a signifi-
conical [10]. Each of these unusual cell geometries presentant sensitivity to variations in the conical cell's opening
unique features leading to distinct physical effects, whichangle.
deserve separate, in-depth analyses. It has been shown inin the present paper we study the influence of gravity in
Refs.[7-10] that background geometry/topology plays a ma-the development of fingering patterns in a conical Hele-Shaw
cell. We consider the action of both gravity and fluid injec-
tion, and investigate interface dynamics as a function of the
*Email address: jme@lftc.ufpe.br cone opening angle. We focus on the coupling between cell
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FIG. 1. Schematic configuration of flow in a conical Hele-Shaw
cell under the action of gravity and injection. The cone opening
angle 0 <2y=<180°. Other relevant physical quantities are de-
fined in the text. The unit vectors along the radial and azimuthal

directions on the cone are represented;)bgtnd e, respectively.

topology and gravity, and study the consequences of such
coupling to the nonlinear evolution of the emerging patterns.
Throughout this work we will verify that gravity profoundly
affects interface evolution.

The outline of the work is the following: Section Il intro-
duces our pertubative mode-coupling approach, and derives
a nonlinear differential equation that governs the time evolu-
tion of the interface. Section Il discusses the resulting mo-
tion. Section Il A presents a brief discussion of the linear
growth rate and identifies relevant stabilizing/destabilizing
factors. Section 11l B uses the nonlinear mode-coupling dif-
ferential equation to examine how gravity affects finger tip
splitting and finger competition. The introduction of nonlin-
earity through gravity leads to important effects, and provide
a much richer phenomenology. Section IV presents our final
remarks and discusses perpectives of further study.

Il. FORMULATION AND MODE COUPLING

Consider the motion of two immiscible, incompressible,
viscous fluids, flowing in a narrow gap between two coaxial, FIG. 2. Sketch of Hele-Shaw cells witta) 3=1 (flat radial
thin conical shells—the so-calledonical Hele-Shaw cell ~ case, 2=180°), (b) B=3/2 (2y=120°), and(c) B=1/2 (2y
(see Fig. 1 Both shells have the same opening angle 2 =60°). The topological parametg=sin y.

resulting in a constant gap thicknesetween them. This o )
geometrically constrained cell forces the flow to become egtional periodicity is intrinsically related to the conical nature
of the background space on which the flow takes place.

sentially two dimensional, and the two-fluid interface one- , - o
dimensional. Therefore fluid flow takes place on the surface 1h€ SPace defined by metrit) describes a cone which is

of a two-dimensional cone, embedded in three dimensiong£onstructed by extracting a wedge of anghe(2— ) from
described in polar coordinatep,) by the metric a planar surface, and by identifying the resulting edges. Such
a cone is locallybut not globally flat with a conical singu-

ds?=dp?+ p2de?, (1) larity at its vertex[16,17. The Gaussian curvature of the
cone is given byK=2x(1—B),(p), where ,(p) is the
where 0<p<> measures the distance along the surface ofwo-dimensional delta functiofil8]. The paramete mea-
the cone from the apep=0, and O<¢=<2mB denotes the sures the “sharpness” of the conical background space, as
azimuthal angle measured on the cone, with®<1. If not  well as the intensity of the Gaussian curvature at the cone’s
by the change in the periodicity @af metric (1) would de-  vertex. Note tha3 is conveniently related to the cone apex
scribe an ordinary two-dimensional plane. Such unconvenhalf angle byB=siny. Figure 2 illustrates the general ap-
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pearance of the Hele-Shaw cell for a few valuegoWe use ing point is the important qualitative distinction between
B to investigate how the nontrivial geometrical and topologi-gravity-driven flows in conical and inclined, rectangular
cal features of the conical Hele-Shaw cell couple to gratityHele-Shaw cell{1,2]. In tilted rectangular cells, one may
and affect interfacial pattern formation. change the strength of the gravitational force by varying the
The viscosities and densities of the upper and lower fluidgell's inclination angle with respect to the direction gfin
are denoted as;;, 01, and 7,, ©,, respectively(Fig. 1).  rectangular cells, this can be done without varying the un-
Fluid 1 is injected into fluid 2 through a small orifice located perturbed flow velocity. In contrast, in conical cells both un-
at the cone’s vertex, at a given flow ra@e which is the area  perturbed velocity and gravitational force dependfrand
covered per unit time. The flows are assumed to be irrotatherefore are modified if the cone opening angle is varied.
tional and there is a surface tensionbetween the fluids. The connection of gravitational force and unperturbed veloc-
The acceleration of gravitg is constant, and points down- ity with B introduces interesting interfacial behavior.
wards along the cone’s vertical axis of symmetry. During the To conclude our derivation, we follow standard steps per-
flow, the two-fluid interface has a perturbed shape describetbrmed in weakly nonlinear studig¢3,10], by defining Fou-
asp=R=R+{(¢,t), whereR=R(t) denotes the time de- rier expansions for the velocity potentials, which obey
pendent unperturbed radius atiflp,t) represents the inter- Laplace’s equatiorV2¢>J- =0. We expressp; in terms of the
face perturbation amplitude. The unperturbed shape is perturbation amplitudeg, by considering the kinematic
conical cap of radiuR and surface ared = 78R?. Note the  boundary conditiom- V ¢,|zx=n-V ¢,|, wheren denotes

identity Q=vL, where the unit normal to the interface pointing from fluid 1 to fluid
2 [2,10,19. Substituting these relations into E¢), and
- Q 5 Fourier transforming, yields the mode coupling equation of
v 27BR ) the Saffman-Taylor problem in a conical Hele-Shaw cell,

taking into account both injection and gravity
denotes the velocity of the unperturbed interface, laigithe
unperturbed interface perimeter.
In order to investigate the dynamical evolution of the two- » —\ (n)z,+ >, [F(n,n") ¢ &+ G0N )i Enenr],
fluid interface in a conical Hele-Shaw cell, we represent the n' 40
net interface perturbation as )

+ oo

(o= 3 z:n<t>exp(m7‘o), (3 Where

where £,(t)=(1/27B) [57P{(¢,t)exp(-ing/B)d ¢ denotes
the complex Fourier mode amplitudes ami=0,+1,
+2,... is thediscrete azimuthal wave number.

The governing equation for the system is derived by add- X
ing a gravitational force term to a generalized version of the + @W Vl—ﬁzl (6)
usual, flat Darcy’s law1,2], adjusted to describe flow in a
conical Hele-Shaw ce[l10], yielding

A(n)=

LA| [ p— |(n_2_1)
27TR2B2( n ’B R3,8 n ﬁZ

denotes the linear growth rate, and

A b1l + Pl _(¢1|R_¢2|R
2 2 Einn) n| QA {1 o)
nn')=— sgn(nn

= — aklg+x V1= Bl (4 R |2-r2p2l2
where ¢; defines the velocity potential in fluids=1 and 2, n’ ,
A= (75— n1)/(m,+7,) is the viscosity contrast, a - RT,B 1‘;(3n +n)lr, (7)
=b%¢/[12(5,+ 77,)] contains the surface tension, and B
=b%g(e1—0,)/[12(n,+ 1,)] measures the strength of
gravitational forces. To obtain E¢4) we used the pressure 1( In|
boundary conditionp; —p,=o«|x at the interfacep="R, G(n,n’)=ﬁ(AF[l—sgr(nn’)]—ll (8)

wherek is the interfacial curvaturf2,10,19. Note that the
gravity term in Eq.(4) depends o1B, and as expected, goes
to zero in the flat-cell limit8— 1 (flat radial flow). represent second-order mode coupling terms. The overdot
At this point, we would like to mention that the study of denotes total time derivative, and the sgn function eqtdls
the Saffman-Taylor instability in conical cells allows one to according to the sign of its argument. It is worth noting that
investigate the action of gravitational forces in radially sym-F(n,n") andG(n,n") depend orB, but show no dependence
metric Hele-Shaw flows. Previous studies of radial sourcavhatsoever on gravity. Gravitational forces will affect non-
flow in flat, circular[3,4], and wedge shap€gd,6] cells do linear stages of interface evolution through the coupling of a
not include any contribution from gravity. Another interest- full spectrum of modes, as expressed in Ej.
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1. DISCUSSION where the cosina,,={,+{_,, and sineb,=i({,—¢_,) am-
plitudes are real valued. For consistent second order expres-

. , ) . sions, we replace the time derivative teras and b,, by
Before addressing the major subject of this work, namely)\(n) a, and\(n) b,,, respectively. Without loss of general-

the study of gravity-induced nonlinear effects in conicaljty, we choose the phase of the fundamental mode so that

cells, we briefly discuss the linear growth rate expres&n 5 >0 andb,=0.

It is well known that the linear |nStab|l|ty of the fluid-fluid Finger t|p Sp||tt|ng and t|p sharpening phenomena are re-

interface can be evaluated by the sign of E8): if N(n)  |ated to the influence of a fundamental matden the growth

>0 the disturbance grows, indicating instability. of its harmonic 2 [20]. The equations of motion for the
We begin by describing each termXign). Inspecting Eq. harmonic mode are written as

(6) we observe the interplay of injectio®], surface tension

(a), and gravity () terms in determining the interface in- =\ (2N) 2, + ET(Zn n)a2 9)

stability. In general, the injection term can be either positive 2n 't 2 o

or negative depending on the signs@fandA. The cas&) )

>0 (Q<0) corresponds to injectiorisuction of fluid, b,,=N\(2n)b,,, (10

while A>0 (A<O0) is related to the case in which the upper ) ) o ]

(lowe) fluid is the less viscous. The second term on the rightvhere the finger tip function is defined as

hand side of Eq(6) involves the contribution coming from T2n.mM=TE(2n.m+\mMG(2n.n 11

surface tension, and clearly has a stabilizing natorstabi- (2n.m=[F(2n.m+MmG2nn)]. (D

lizes modes of large). Finally, as a result of gravitational The functionT(2n,n) controls finger tip behavior. The sign

forcing the third term in Eq(6) may be either positive or  of T(2n,n) dictates whether finger tip splitting or finger tip

negative, depending on the relative values of the fluid’s dengparpening is favored by the dynamics.Tif2n,n)<0, the

sities. If the upper fluid is more dens@{>¢5), gravity  result is a driving term of ordea? forcing growth ofay,,

plays a destabilizing role. The opposite effect arises Whe’ko, the sign that is required to cause outwards pointing

0:1<0>. fingers to split. In contrast, iT(2n,n)>0 growth of a,,

On top of all these possible linear stability scenarios, note. 5 \would be favored, leading to outward-pointing finger tip
that the three terms in E¢6) contain an explicit dependence sharpening.

on unperturbed interface radi& and ong. In generaR is Finger competition is related to the influence of a funda-

time dependent, so the balance among the varioUgental moden, assumingn is even, on the growth of its

stabilizing/destabilizing terms depends on time, and theig,pharmonic moda/2 [20]. The equations of motion for the
relative intensities may vary as the interface progresses. 18,phamonic mode are

addition, by virtue of its dependence ghthe linear growth
rate (6) would vary if the cell opening angle is modified. _ 1
Because of the large number of independent parameters, anIZZ()\(nIZ)—'—EC(n/Z)an} ans2, (12)
even at the linear level, the study of the fluid-fluid interface
dynamics in conical cells is not trivial. . 1

To facilitate our analysis in the rest of the paper we will bn,2=()\(n/2)— —C(n/2)an} br2, (13
be concerned with the tradicional experimental setup of the 2
Saffman-Taylor pro_blem, n .Wh'Ch Injection s pqsm\@ where the finger competition function is defined as
>0, and the less viscous fluid pushes the more viscous one,
such thatA>0. Under these circumstances the first term in
Eq. (6) is destabilizing, and even if gravity is neglected the C(n/2)=
viscosity contrast between the fluids may lead to complex
interface shapes involving finger tip splitting and finger com-
petition. To monitor gravitational effects we consider specific

Eli'::Jz?;lon\sl\/Ii?h\iArI]h[cﬂi]sg;i\élr?e/xr(i:gnwt:aeselg'zgrrnz[tzii(t:)glllzmg[uoé dﬁiz'the growth of the cosine subharmormig,, while inhibiting
the cc?ﬁpling between gravity andycell topoloz:]/y inflzencesgrOWth of its sine subharmoniby,. The result is an in-
growth in a conical cell. We carry out the nonlinear analysisc.reaseOI vz_irlabmty among _the lengths of_flngers O.f the Ie_ss
of the system in the ne.xt sections viscous fluid 1 penetrating into the more viscous fluid 2. This
' effect describes finger competition. Sine modhes would
vary the lengths of fingers of the more viscous fluid 2 pen-
etrating into the less viscous fluid 1, but it is clear from Eq.
We use the mode coupling E@5) to investigate how (13) that their growth is suppressed. Reversing the sign of
gravity influences the shape of the fingering patterns at th€(n/2) would exactly reverse these conclusions, such that
onset of nonlinear effects. We focus on the mechanisms ofodesb,,, would be favored over modes,,. Regardless of
finger tip splitting and finger competition, and consider theits sign, the functionC(n/2) measures the strength of the
coupling of a small number of modes. To simplify our dis- competition: increasingly larger values 6{n/2) lead to en-

cussion we rewrite Eq5) in terms of cosine and sine modes, hanced finger competition.

A. Linear growth rate

F nn)\/ZGnn
22| TMMAG[3 75|

The functionC(n/2) disciplines finger competition. Observ-
ing Egs.(12) and (13) we verify thatC(n/2)>0 increases

(14)

B. Nonlinear effects
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TABLE I. Experimental parameters used in situations | and Il, taken from Ref3.4]. In situation I(1l)
fluid 1 is water(air) and fluid 2 is Shell Diala oilglycering. The acceleration of gravity=980 cm/S.

Situation m 7 01 0, o b Q
(g/lcm s) (g/lcm s) (g/ci) (glen?) (dyn/cm) (cm) (crivs)
| 0.01 0.30 1.00 0.875 15 0.10 9.3
1] ~0 5.21 ~0 1.261 63 0.15 9.3

As pointed out in Sec. Ill A, the analysis of viscous fin- tendency toward tip splitting. This effect is not really surpris-
gering pattern formation in conical cells involves many in-ing, 01>, and gravity is obviously a destabilizing factor.
dependent parameters. Consequently, one must be particdowever, Fig. 3 quantifies important discrepancies between
larly cautious in handling with situations in which the cell interface evolution in the presence/absence of gravity. If
opening angldor correspondinglyB) is varied. We follow  gravity is neglected, and we focus on a given mageve
the instantaneous approach introduced in R&f.while 8is  observe that the magnitude ©{2n,n) is maximum for the
varied, we look at the instantaneous tendency towards tiflat, radial case §=1) and monotonically decreases s
splitting and finger competition for interfaces of identical tends to zero. Therefore when gravity is neglected narrower
unperturbedv and L, taking advantage of the identit@ cells would lead to less splitting.
=vL [see Eq(2)]. In the case of tip splitting, we consider a  On the other hand, when gravity is taken into account the
particularv and L combination at the onset of growth of behavior in Fig. 3 is considerably different: initially,
mode 2 [using the conditionn(2n)=0] in the flat cell limit ~ T(2n,n)<0 decreases with decreasifly reaches a mini-
B—1, where it is known thaT(2n,n) is negative[20]. In mum value, and subsequently increaseg3aends to zero,
the analysis of finger competition, we take a differerand  although remaining always negative. The essential fact is
L pair at the onset of growth of mode[using the condition that gravity not only leads to more splitting, but for each
A(n)=0]in the limit 3—1, where itis known tha€(n/2) is  assigns a particular value ¢, that we denote byd(n), at
positive[20]. Using this approach we fix the (L) pairs that  which T(2n,n) reaches aninimum Consequently, for each
lead to the correct flat, radial flow behavior for which moden there is a specific value of the cone opening angle at
T(2n,n)<0 andC(n/2)>0, and follow alterations in inten- which the intensity of finger tip splitting is strongest. This is
sity and/or sign of these functions whifis varied. an intrinsically nonlinear effect which is completely absent

Depending on the experimental parameters used, qualitavhen gravity is neglected. Under the cirscumstances of situ-
tively different scenarios of interfacial instabilities can be ation I, one could control tip splitting and induce a certain
considered in conical cells. In this work, we are interested imumber of split fingers, by setting the appropriate cell open-
studying the effects of gravity in the usual viscosity-drivening angle.

Saffman-Taylor instability. Therefore we sgt<< 7,, and ex- Figure 4 shows hovﬁ(n) varies with moden. By inspect-

amine two different situations, regarding the relative values . .
of the fluid’s densities(i) in situation I, water displaces oil. "9 Fig- 4 we note that the values 5{n) quickly drop to an

This is a rather typical situatiofL] in which fluid 1 (watep ~ @sSymptotic valueg(n—=)~0.7071, asn is increased. In
is more dense and less viscous than fluig®); (ii) in situ-  Fig. 4 8(n—) is marked by a dashed line. Forsh<,
ation Il, air is blown into glycerine. This is the usual con- the values ofg that minimizeT(2n,n) lie in a somewhat
figuration in viscous fingering experimerit], where fluid 1

(air) is less viscous and less dense than fluigg®cerine. 0.04

The physical parameters we use in our calculations have T 2

been taken from classical experimental papers by Saffman 0.02 ( n;n)

and Taylor{1], Patersorj3], and Cherj4]. These parameters B

are presented in Table I. Of s

C. Situation | 0.02 \“\\_ n=10

First, let us examine situation i< 7,,0,>05). In this i

case the morphological instability can be driven by both vis- 0040 N T

cosity and density differences between the fluids. We begin

by examining tip splitting events. To illustrate how gravity -0.06 -6

affects tip splitting as a function of the cell opening angle, in n=

Fig. 3 we plotT(2n,n) with respect tog, for two different -0.08

values of mode numbemn. The solid black curves include
gravitational driving, while the dashed gray curves neglect
the effects of gravity. First, note that the black curves lie FIG. 3. T(2n,n) as a function of3, for modesn=6,10 in situ-
below the corresponding gray ones, meaning that gravity ination I. The solid(dashedl curves describe evolution for nonzero
duces more negative values ©{2n,n), and acts to favor (zerg gravity. The units off(2n,n) are (cm s) ™.

0.2 04 0.6 0.8 1
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1
0.95 B(n) 0.2 T(Z n ’n)
. n=_§8
0.9 O——
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FIG. 4. Plot of 3(n) as a function of mode number. The FIG. 6. T(2n,n) as a function of3, for modesn=5,6, and 8 in
dashed line corresponds to the asymptotic val@én— o) situation 1. The solid(dashedl curves describe evolution for non-
~0.7071. zero(zerg gravity. The units off(2n,n) are (cms)L.

o gravity (solid black curveswith the case in which it is ab-
narrow range: 0.70& B3(n)=0.9080. In terms of the cone sent(dashed gray curvesThe differences of results are not
opening angle it corresponds to the interval €2y  as dramatic as in the case of tip splitting events mentioned
=<130°, which is actually small if compared to the total above, but are still noteworthy. We see from Fig. 5 that, all
180° range in . This last finding is somehow unexpected, black curves lie above the gray ones, meaning that gravity
and could not be predicted from purely linear analysis. Inenhances finger competition. As soon @sassumes values
practical terms, this narrow interval could be consideredslightly smaller than 1, gravity takes over and competition
even narrower if we take into account the fact that the magincreases significantly in comparison to the flat radial case
nitude of T(2n,n) at B(n) decreases very rapidly with in- (8=1). Unlike finger tip splitting behavior, finger competi-
creasingn, as can be easily verified in Fig. 3. Based on thesdion keeps increasing whes tends to zero.
conclusions we see that the inclusion of gravity in conical
cells profoundly modifies pattern formation dynamics: finger D. Situation Il
tip splitting is strongest at a particular set of cell opening
angles, concentrated within a narrow angular interval.

Still considering situation |, we investigate the effect of
gravity on finger competition dynamics. Figure 5 illustrates
how finger competition varies with the cell opening angle
under the effect of gravity, and plo&(n/2) as a function of
B. We contrast finger competition behavior in the presence

Now we turn our attention to situation Ill7;<7,,01
< 05,). Recall that now the density of the displacing fluid 1 is
smaller than the density of fluid 2. Consequently, gravity
should play a stabilizing role. However, one should not for-
get that, as verified in situation I, nonlinearity may lead to
important effects, and introduce a richer phenomenology.

his is exactly what we find by examining tip splitting for-

mation in situation II.

We start by analyzing Fig. 6, that shows haw2n,n)

C(I”I/Z) varies withg, forn=>5,6, and 8. Observing Fig. 6 we notice
n=

1

“n

a remarkable feature: by varying the functionT(2n,n)
changes not only its magnitude, but it also can reverse its
sign For moden=5 the black curve is above the dashed
_______________________________ gray one, so gravity decreases the strength of tip splitting.
"""""" Observe further that, fon=6 and n=8, T(2n,n) starts
negative, but after reaching a critical value @f calculated
5 by setting T(2n,n)=0], it becomes positive. We denote
n=10 these values o8 at which this “sign transition” inT(2n,n)
occurs byB.(n).
0 The central result that can be extracted from Fig. 6 is that,
if n>5 andpg is decreased, gravity plays two distinct roles:

B it starts by inhibiting tip splitting, and after reachigg(n) it
passes to favor tip sharpening. This is a legitimate signature
of nonlinearity: gravity is linearly stabilizingg;<o,), but

FIG. 5. C(n/2) as a function of3, for modesn=6,10 in situa-  in terms of tip sharpening formation it may play a destabi-
tion 1. The solid (dashed curves describe evolution for nonzero lizing role. Obviously, this effect could not be predicted by
(zero gravity. The units ofC(n/2) are (cm sy . linear stability analysis. Note in Fig. 6 that the zero-gravity,

10

0.2 04 0.6 0.8 1
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FIG. 7. Plot of8.(n) as a function of mode number Note the FIG. 8. C(n/2) as a function of3, for modesn=6,8 in situation
abrupt change ah=6, corresponding to a “sign transition” in II. The solid (dashedl curves describe evolution for nonzef@ero
T(2n,n). gravity. The units ofC(n/2) are (cms) .

B—0. Forn=6 (n=8) the location of the minimum i@
~0.4331 (3~0.2210). In fact, we have verified that the lo-
cation of the minima tends very rapidly {8~0 asn is
increased. In addition, the magnitude @f(n/2) at the
minima decreases notably with increasmgdn principle, the
coupling between gravity and cell topology could increase or
decrease finger competition, depending on the value of the
cell opening angle. However, based on the comments above,
nd on the behavior depicted in Fig. 8 we conclude that

ting functg)n IS about_to I:e\;erie its sign. We ;Is: note tha nhibition effects are much more significant. In practical
Bc(n) tends asymptotically to 1 asis increased. However, terms, when gravity is acting the prevalent tendency of

we should not expect dramatic transitions from tip spIittingC(n/Z) is to become lower and lower in magnitude @ss
to tip sharpening whens—1, since the magnitude of ;... ~.

T(2n,n) decreases with increasing The contribution of
larger Fourier modes to finger tip splitting and tip sharpening
is negligible. We estimate that the sign transitiorTif2n,n)
is more significant for modes $n<10, where 0.7008 In this paper we have investigated gravity-induced non-
=< 3.(n)=0.9680. In terms of the cone opening angle it cor-linear effects in conical Hele-Shaw cells. We used a mode
responds roughly to the interval @2vy=<150°. Curiously, coupling approach to examine how gravity couples to cell
this interval of angles, in which interesting effects are moretopology and influences finger tip splitting and finger com-
relevant in situation Il, is very similar to the angular range inpetition. Two basic situations have been considered: in situ-
2 that maximizesT (2n,n) in situation |. We lack an expla- ation I (Il) the displacing fluid is less viscous and mdess
nation for why this is so. dense. In both situations we have found that the introduction
We conclude this section with a brief discussion aboutof nonlinearity through gravity leads to important effects,
finger competition under the circumstances of situation Il. Inwith remarkable consequences for viscous fingering pattern
Fig. 8 we plotC(n/2) as a function ofB for two different  formation.
values ofn. As a general observation, we see from Fig. 8 that The most dramatic consequences are related to finger tip
nonzero gravity curvegsolid) are all located below the zero- behavior. In situation | gravity couples to cell topology to
gravity ones(dashegl So, it is clear that gravity tends to select specific values of the cell opening angle at which the
suppress finger competition in comparison to the zerostrength of finger tip splitting is maximum for a given mode
gravity case. numbern. In situation Il, we have found that gravity plays a
A closer look at Fig. 8 reveals additional information. If dual role: depending on the cell opening angle, and mode
gravity is neglected, we observe that the magnitude ohumbern it may inhibit tip splitting, or favor tip sharpening.
C(n/2) is lowest in the flat, radial limit 8=1), and in- In this case, although gravity is linearly stabilizing, it may
creases monotonically g&tends to zero. The result is more play a destabilizing role regarding tip sharpening phenom-
competition for narrower cells. On the other hand, if gravity enon. With respect to finger competition we have found that
is present, the behavior @f(n/2) as a function of3 is more  the presence of gravity does not act as dramatically as in the
subtle: unlike the zero-gravity case, competition is largestip-splitting case, but it still introduces significant changes in
when B=1, progressively decreases @ is decreased, the magnitude of the effects: in situation | gravity consider-
reaches a minimum, and then starts to increase very gently ably enhances competition among fingers, while in situation

dashed gray curves correspondTi2n,n)<<0 for all non-
zero values of3. Therefore, if gravity is not taken into ac-
count, the interesting duality in the behavior ©{2n,n)
mentioned above simply does not exist.

Figure 7 illustrates how the critical valug3.(n) vary
with mode numben. Forn<6 there is no change in the sign
of T(2n,n) while B is decreased. Ah=6 there is a sudden
jump in B.(n), meaning that aB.(6)~0.7008 the tip split-

IV. CONCLUSIONS AND PERSPECTIVES
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Il it leads to a strong reduction in finger competition. an open question, and deserves a more complete and rigor-
A couple of other important points related to gravity- ous study.
driven flow in conical geometry still deserve to be investi- It is also of interest to investigate in more detail the rea-
gated in more detail. The first one is the interesting possibilsons why some of the most interesting behavior in conical
ity of avoiding the formation of finite time cusp singularities cells with gravity happen at somewhat narrow range of open-
in the absence of surface tension. The role of rotation in thqang angles. It would be of interest to verify the existence of a
possible suppression of such singular behavior has been regitical angle,” at which relevant nonlinear effects are more
cently discussed by Magdalerat al. [21], in the case of intense and dominant. This important issue has an interesting
rotating, flat Hele-Shaw cells. In the conical cell case, theparallel with what has been observed in flat, wedge shaped
coupling between gravity and cell topology could possiblycells. Experiments in the wedge geométBy6] observed an
provide a similar kind of control over cusp instabilities. We increasing sensitivity to finger tip splitting for larger angle
can verify this point by inspecting the linear growth ré& g, Actually, there is some theoretical evideri@2] for the
in the zero surface tension case<0). In Eq.(6) we note  exjstence of a critical angléy~120—140° in viscous fin-
that the injection term goes asRE/ while the gravity term  gering and diffusion-limited aggregation in wedge geometry.
varies as R. SinceR is time dependent foQ#0, the rela-  As claimed in Ref[22], for wedges with an angle larger than
tive weight of injection and gravity terms determines which g, two split fingers could coexist without competition. Simi-
of the two effects dominates asymptotically in time. In fact, jar type of studies in conical cells could provive valuable
if Q>0, A>0, ande;>@,, the typical interface velocities jnformation about the connection between dominant finger

decrease with increasing, so gravity would dominate at hehavior and specific values of cell opening angles.
long times. Under such circumstances, gravity could in prin-

ciple, delay or even avoid cusp formation. It is worth noting

that a similar kind of gravity-controlled effect can be ob- ACKNOWLEDGMENTS

tained in spherical Hele-Shaw celB], where gravity would

couple to cell's Gaussian curvature to prevent cusp forma- |thank CNPq and FINERhrough its PRONEX Program
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linear theory, so its validity in fully nonlinear stages is still with Claudio Furtado.
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